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Abstract
While the COVID-19 pandemic has laid bare the large costs of infectious diseases, less
attention has been paid to the impacts of more common, endemic respiratory viruses
that frequently circulate in the population, especially when it comes to their potential
long-term consequences for population health, human capital, and economic outcomes.
This paper uses Danish population-level administrative data on 35 birth cohorts of chil-
dren to provide a comprehensive analysis of both the mechanisms through which infants
become infected by respiratory illnesses, as well as the consequences of early-life respira-
tory disease exposure for their later outcomes. First, we document a striking difference
in the likelihood of severe respiratory illness by birth order: younger siblings have two
to three times higher rates of hospitalization for respiratory conditions before age one
than older siblings at the same age. We argue that the family unit is central in virus
transmission, with older children “bringing home” the virus to their younger siblings.
We then combine the birth order variation with within-municipality variation in respira-
tory disease prevalence among preschool-aged children to identify differential long-term
impacts of early-life respiratory illness between younger and older siblings. We find that
moving from the 25th to the 75th percentile in the local disease prevalence distribution
(“disease index”) is associated with a 30.9 percent differential increase in the number
of respiratory illness hospitalizations in the first year of life for younger compared to
older siblings. In the long term, for younger relative to older siblings, we find a 0.5 per-
cent differential reduction in the likelihood of high school graduation, and a 1.3 percent
additional reduction in age-30 earnings.
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1 Introduction

The societal costs of infectious disease are often measured in terms of their direct and imme-

diate impacts on public health and economic activity (Adda, 2016). The COVID-19 pandemic

serves as an extraordinary exposé of these costs, inspiring a vast body of research that at-

tempts to quantify them.1 However, less attention has been paid to the costs of more common

“run-of-the-mill” viruses that frequently circulate in the population, especially when it comes

to their potential long-term consequences for human capital and economic outcomes.

This paper focuses on respiratory illnesses and a population that is particularly vulnerable

to being infected with them: infants under age one. We use Danish population-level adminis-

trative data on 35 birth cohorts to provide a comprehensive analysis of both the mechanisms

through which infants become infected by respiratory viruses, as well as the consequences of

early-life respiratory disease exposure for their later outcomes.

We begin by documenting a striking disparity in the likelihood of severe respiratory disease

in early childhood by birth order. Using data on all first- and second-born siblings born in

Denmark between 1980 and 2015, we find that younger siblings have two to three times higher

rates of hospitalization for respiratory conditions during their first year of life compared to

the older siblings at the same age, and that this gap is particularly large when hospitaliza-

tions are measured in the first three months of life.2 Moreover, the hospitalization disparity

is larger if the younger sibling is born in the fall or winter, when respiratory viruses circulate

more frequently. The hospitalization gap is also larger for siblings with shorter birth spacing,

who may be more prone to close contact that facilitates virus transmission. These patterns

highlight the family unit as being central in virus transmission, and the hitherto under-studied

mechanism by which birth order might influence children’s longer-term outcomes—older chil-

dren “bring home” common viruses (e.g., from group childcare environments), putting their

younger siblings at heightened risk of severe respiratory illness in the first few months of life.
1The website ClinicalTrials.gov indicates that there are 6,646 registered studies on COVID-19 as of

September 28, 2021. The National Bureau of Economic Research reports that there are over 500 economics
studies about the pandemic (see https://www.nber.org/topics/covid-19).

2Note that this finding builds on several prior studies that document that higher-order siblings have better
health outcomes at birth than first-borns (e.g., Brenøe and Molitor, 2018; Pruckner et al., 2021). Thus, it
appears that younger children are more susceptible to severe respiratory infection, despite having better health
at birth than their older counterparts.
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While younger siblings are clearly more likely to experience severe respiratory illness in the

first few months of life than their older counterparts, the long-term impacts of this differential

likelihood of illness are ambiguous. On the one hand, the expansive literature on a wide range

of adverse shocks in early childhood documents lasting damages to human capital formation

and other measures of adult well-being (Currie and Almond, 2011; Almond et al., 2018).

On the other hand, evolutionary biology studies highlight the importance of physiological

adaptation—i.e., that adverse shocks can lead to beneficial biological adaptations in humans

(Bateson et al., 2014; Gluckman and Hanson, 2006)—and identify a high rate of immune

system learning in the first year of life (Holt and Jones, 2000; M’Rabet et al., 2008; Côté et

al., 2010). Thus, exposure to an infectious disease in infancy may increase immunity for an

individual if they are exposed to the same virus at older ages, suggesting a potentially non-

linear relationship between early-life exposure and long-term outcomes (Fink et al., 2021).

This type of immunity formation is particularly important for understanding the impacts of

endemic viruses to which children are exposed on a regular basis.

To identify the long-term causal impacts of early-life respiratory disease exposure, we

combine the birth order variation in the likelihood of severe respiratory infection together

with variation in local disease prevalence. Local respiratory disease prevalence among children

is largely driven by highly infectious conditions, such as the Respiratory Syncytial Virus, or

RSV, which spread across locations in irregular waves (Pitzer et al., 2015).3 We construct

a municipality-level index, which is designed to capture respiratory disease exposure during

each child’s first year of life from slightly older children in the community. We calculate the

number of hospitalizations for respiratory conditions per 100 children aged 13 to 71 months

in each municipality, and then assign to each child the cumulative child hospitalization rate

in their municipality over their first 12 months of life.4 We then use our sample of siblings

to estimate the differential effect of the respiratory disease index for younger compared to

older siblings. Our regressions control for birth order, municipality, and birth-year-month
3As demonstrated by Pitzer et al. (2015), climatic factors—including temperature, vapor pressure, precipita-

tion, and potential evapotranspiration—are important predictors of geographic variation in RSV transmission
rates. While these factors may have impacts on long-term outcomes through channels unrelated to respiratory
disease spread (see, e.g., Isen et al., 2017a, for evidence on early-life exposure to extreme temperature), we
note that such channels are unlikely to differentially influence first versus second-born children.

4If a given child has an older sibling who is between 13 and 71 months of age during their first year of life,
we exclude the older sibling from the hospitalization rate.
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fixed effects, thus accounting for other differences between older and younger siblings, time-

invariant differences across municipalities that might drive differences in disease exposure, and

aggregate and seasonal trends in respiratory illness.

We show that the local respiratory disease index strongly predicts the likelihood that a

child is hospitalized for a respiratory illness during the first year of life, and that this impact

is much larger for younger relative to older siblings. We find that moving from the 25th to the

75th percentile in the disease index distribution is associated with a 0.021 differential increase

in the number of respiratory illness hospitalizations in the first year of life for younger relative

to older children, representing an additional 30.9 percent increase at the sample mean. This

effect is in part driven by a differential increase in hospitalizations for RSV, which is a mild

illness in most older children but can be extremely serious among infants.5

In the long run, the increased exposure to severe respiratory illness during infancy among

second-born children translates into worse educational and labor market outcomes for them.

We find that, for the younger siblings, moving from the 25th to the 75th percentile in the

disease index distribution is associated with a 0.4 percentage point (0.5 percent) differential

decline in the likelihood of high school graduation, and a 1.3 percent additional reduction in

earnings at age 30.

We also examine the impacts of respiratory illness exposure in the first year of life on

hospitalizations for respiratory conditions in later childhood. We find that higher respiratory

disease exposure before age one is associated with a lower likelihood of hospitalization for

all respiratory conditions at ages three to four, consistent with the hypothesis of immunity

formation. We do not, however, observe a protective effect of first-year-of-life RSV exposure

on the likelihood of RSV hospitalization during later childhood. This result is consistent with

RSV not being an immunizing disease—that is, an RSV infection does not provide immunity

against future illness. This lack of immunity formation, combined with the fact that RSV

accounts for a large share of all respiratory hospitalizations during infancy (30 percent among

second-born children), suggests that RSV might play a particularly important role in driving
5In most healthy individuals, RSV causes mild, cold-like symptoms. But in infants, RSV can cause severe

respiratory infections, including bronchiolitis and pneumonia. Recent estimates suggest that approximately
14.7 per 1,000 infants under six months of age and 2.9 per 1,000 children under age five are hospitalized with
RSV every year (Rha et al., 2020). For comparison, the COVID-19 hospitalization rate for children ages 0–4
is estimated to be 0.6 per 1,000 (see: https://gis.cdc.gov/grasp/covidnet/covid19_3.html).
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adverse long-term impacts on educational and economic outcomes.6

The lack of a differential increase in hospitalizations in later childhood for younger siblings

further suggests that the long-run impacts that we estimate are unlikely to be solely driven

by worse health in later childhood. Indeed, the long-run effects likely reflect both biological

channels and parental responses (Almond and Mazumder, 2013; Yi et al., 2015; Adhvaryu and

Nyshadham, 2016; Daysal et al., 2020; Pruckner et al., 2021).7

Lastly, we analyze heterogeneous impacts across different sub-groups of our sample based

on parental socio-economic status, child health at birth, sibling gender composition, and child

birth spacing. We find similar estimates across all sub-groups with one important exception:

low birth weight younger siblings (those with birth weight less than 2,500 grams) experience a

much larger differential increase in hospitalizations for respiratory conditions during the first

year of life.

This study contributes to an expansive body of work on the human capital impacts of early

life circumstances (Barker, 1990; Currie and Almond, 2011; Black et al., 2017; Almond et al.,

2018). This literature includes estimates of the impacts of a vast range of prenatal and early

childhood factors—from economic resources (e.g., Hoynes et al., 2016; Bailey et al., 2020) to

nutrition (e.g., Almond and Mazumder, 2011) to environmental conditions (e.g., Almond et

al., 2009; Isen et al., 2017b; Black et al., 2019) to maternal stress (e.g., Black et al., 2016;

Persson and Rossin-Slater, 2018). The literature on infectious diseases in early childhood has

focused on severe and often life-threatening infectious diseases, such as malaria and polio, that

have been largely eradicated in high-income countries but still exist in the developing world

(Bleakley, 2010; Barreca, 2010; Cutler et al., 2010; Lucas, 2010; Venkataramani, 2012; Chang

et al., 2014; Barofsky et al., 2015; Gensowski et al., 2019; Kuecken et al., 2021; Fink et al.,

2021), and on large-scale pandemics like the 1918 Spanish Flu (Almond, 2006; Almond and
6Unfortunately, we cannot measure the long-term effects of RSV illness directly. Our long-run analysis

uses cohorts born in 1980–1989, whom we can observe through age 30 in the data. But Denmark used the
International Classification of Disease version 8 (ICD-8) coding system until 1994, which does not contain a
diagnostic code for RSV specifically. We can only measure RSV exposure for cohorts born in 1994 and later,
when Denmark switched to the ICD-10 system.

7If parents engage in compensating responses—i.e., investing more in the younger child in response to the
health shock—then our effect sizes would reflect under-estimates of the “true” biological impact of respiratory
disease in infancy. If parents engage in reinforcing responses—i.e., investing less in the younger child in
response to the health shock—then our effect sizes would be over-estimates of the “true” biological impact.
We unfortunately do not have any data on parental behaviors to disentangle these two possibilities empirically.
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Mazumder, 2005; Lin and Liu, 2014) and the 1957 Asian Flu (Kelly, 2011). Schwandt (2018)’s

analysis is an exception in that it focuses on the impacts of exposure to an endemic respiratory

virus—the seasonal influenza—but only during the in utero period. Our study builds on this

work by studying a range of respiratory illnesses that circulate among young children on a

regular basis, and by focusing on the first year of life instead of the prenatal stage.8 Our novel

estimates of long-term impacts of severe respiratory disease can inform cost-benefit evaluations

of policies designed to curb transmission of common viruses, including vaccination mandates,

drug distribution programs, and sick pay regulations (Bhalotra and Venkataramani, 2015;

White, 2019; Pichler and Ziebarth, 2020; Bütikofer and Salvanes, 2020).

Our analysis further contributes to the literature on birth order and sibling spillovers, which

has documented worse human capital and life outcomes for later-born children relative to first-

borns (Black et al., 2005; Price, 2008; De Haan, 2010; Buckles and Kolka, 2014; Brenøe and

Molitor, 2018; Lehmann et al., 2018; Breining et al., 2020; Black et al., 2021). This literature

typically points to family resources and uneven parental investments as drivers of younger

siblings’ disadvantage. Our results suggest that the disease environment during infancy is

an additional source of disadvantage for later-born children, and that the older sibling likely

serves as a vector of transmission. Importantly, the long-term effects we measure are net

of any parental responses to the health shocks. To the extent that parents may respond to

one child’s sickness in a compensatory way—as found by Yi et al. (2015) and Daysal et al.

(2020)—the sibling differences in long-run outcomes that we find represent lower bounds of

the raw (i.e., biological) impact of respiratory illness during infancy on later well-being.

Finally, this study is also relevant for the assessment of the costs of the COVID-19 pan-

demic for young children. While children have largely not been considered to be a high-risk

group in terms of infection with the SARS-CoV-2 virus, the pandemic may have lasting and

dynamic impacts on children through its effects on other infectious diseases. Policies imple-

mented during the pandemic—including travel restrictions and school closures—have reduced

the spread of other respiratory viruses, including RSV (Leung et al., 2020; Cowling et al.,
8Studies in the medical literature have analyzed the health impacts of RSV infection, with a focus on

asthma as an outcome. These studies use relatively small samples of children to correlate RSV infection (or
RSV hospitalization) with later health conditions (e.g., Kneyber et al., 2000; Korppi et al., 2004; Kusel et al.,
2007; Régnier and Huels, 2013; Zomer-Kooijker et al., 2014; Carbonell-Estrany et al., 2015). We are not aware
of studies using quasi-experimental designs to isolate causal impacts of early life RSV exposure, or those using
population-level administrative data.
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2020). Our results suggest that some infants with older siblings—who would have otherwise

been exposed to RSV during their first few months of life due to their older siblings bringing

home these infections—may experience lasting benefits from the pandemic-induced protection

from RSV.

At the same time, while the pandemic restrictions have led to a short-term reduction in

infectious disease exposure among infants, the intertemporal dynamics of disease spread imply

that there could be an increase in disease burden over the coming years. Epidemiological

models predict that pandemic periods with muted spread of common infectious diseases are

followed by stronger outbreaks (Baker et al., 2020). In fact, RSV cases have been surging

following the removal of COVID-19 restrictions in summer 2021.9 This surge likely reflects

the larger than usual susceptible population of young children who have been shielded from

common viruses during the pandemic and thus have not yet built up their immune systems

(Leung et al., 2020; Cowling et al., 2020; Huang et al., 2021). Thus, the COVID-19 pandemic

may have important long-term effects on children through its dynamic impacts on the spread

of other infectious diseases that are more serious in early life, including common respiratory

viruses such as RSV.

2 Data and Sample

We use population register data from Denmark for the years 1980 to 2015. These data include

individual-level records with unique personal identifiers that allow us to follow individuals over

time and to link family members to one another.

Outcome variables. As outcomes, we study hospitalizations during childhood, as well as

measures of long-term educational achievement and economic well-being.

More specifically, our key short-run outcome is the number of hospitalizations with a

respiratory disease diagnosis during the first year of life. We measure this outcome using

the National Patient Register, which includes all inpatient admissions to public and private

hospitals, along with International Classification of Disease (ICD) diagnosis and procedure
9In July 2021, the Centers for Disease Control and Prevention issued a health advisory about an unusual

surge in RSV cases among young children: https://emergency.cdc.gov/han/2021/han00443.asp.
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codes (Lynge et al., 2011). We classify inpatient visits with the following primary diagnosis

codes as respiratory disease-related: ICD-8 codes starting with “46,” “47,” “48,” “490,” “079,”

and “783”; and ICD-10 codes starting with “B974” or “J” (excluding “J4”). We also examine

hospitalizations for RSV specifically for cohorts born in 1994 onwards, which we identify with

ICD-10 codes J12.1 (respiratory syncytial virus pneumonia), J20.5 (acute bronchitis due to

respiratory syncytial virus), J21.0 (acute bronchiolitis due to respiratory syncytial virus), and

B97.4 (respiratory syncytial virus as the cause of diseases classified elsewhere).10

For educational outcomes, we consider 9th grade test scores and educational attainment

by age 30. Test scores come from the Academic Achievement Register, which exists from

2001 onward. We consider Danish (reading) and mathematics test scores separately, and

standardize the scores within subject and test year such that they have a mean of zero and

a standard deviation of one. Educational attainment comes from the Education Register

1981-2019, which contains the highest level of completed schooling from administrative school

records. We create indicators for having a high school or a college degree by age 30.

Finally, we use two registers to measure labor market outcomes at age 30. We use the

Register-Based Labour Force Statistics 1980-2019 to characterize employment status. This

data set is based on tax records, and records the employment status of the entire Danish

population (observed on January 1st) as of November of the preceding year (Petersson et al.,

2011). We construct an indicator equal to one if an individual is employed and zero otherwise

(i.e., those who are unemployed and those who are out of the labor force are both coded as

zero). We also use the Income Statistics Register 1980-2019 to calculate the natural log of

gross personal income at age 30, converted into 2010 $USD.

Control variables. We observe a rich set of child and parent characteristics, using the

previously defined registers as well as the Population Register and the Birth Register. The

Population Register provides a snapshot of demographics on all Danish residents as of January

1st of each year (Pedersen, 2011). The Birth Register includes the universe of births, with

information on the exact date of birth, gender, plurality, and birth weight. It also has unique
10Denmark switched from the ICD-8 system to the ICD-10 system in 1994. The ICD-8 system did not have

any codes specific to RSV.
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parental identifiers, allowing us to link siblings and determine birth order.11

Some of our specifications include the following variables as controls, measured at the time

of childbirth: child gender, maternal age, maternal foreign-born status, maternal education

level, and parental marital/cohabitation status. We also include controls for the natural

log of the mother’s, father’s, and the family’s total income, as well as parental labor force

participation, all measured in the year before childbirth.

Analysis sample. To construct our analysis sample, we begin with the universe of 2,221,433

children born between 1980 and 2015 in Denmark and make the following restrictions. First,

we exclude families with only one child. Second, we only keep the first and second-born

children in every family, and further, we only keep families in which the first and second-born

children are singletons. Third, we only keep children in sibling pairs with a birth spacing gap

of at least 11 months, which ensures that there is no overlap in the first year of life of the

two children. Fourth, we only keep children with non-missing information on municipality of

birth and who are born in municipalities that have an average of at least 1,000 children aged

13–71 months over the sample period, which ensures that we have sufficient observations to

calculate the respiratory disease exposure index as described in Section 3 below.12 Finally,

we drop children with missing parental control variables, and keep sibling pairs in which both

children remain in the sample after these restrictions.

Our final analysis sample consists of 1,176,746 children, which we use to analyze short-

term impacts of respiratory disease exposure on hospitalizations in the first year of life. When

studying long-term outcomes, our sample sizes differ depending on the ages at which outcomes

are measured. To study test scores, we use children born between 1986 and 2003 because test

score data begin in 2001 and we need to observe children when they are in ninth grade (around

age 16). To study educational attainment and labor market outcomes at age 30, we analyze

children born between 1980 and 1989.
11Specifically, the birth records contain identifiers for all mothers. If the mother is married at the time of

childbirth, then her husband is automatically registered as the biological father. If the mother is unmarried,
then the biological father’s identifier is listed if he establishes paternity. Fathers’ identifiers are missing for
only 0.58% percent of observations in our analysis period.

12This restriction leads us to drop children born in eight small municipalities.
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3 Descriptive Analysis and Empirical Design

3.1 Differences in Respiratory Disease Hospitalizations between

Older and Younger Siblings

Our goal is to analyze the causal effects of respiratory disease in the first year of life on

health, educational, and economic outcomes. To motivate our empirical design, we begin

with a descriptive analysis of respiratory disease hospitalization patterns among children in

our sample, comparing first- and second-born siblings. This analysis sheds light on a likely

mechanism through which respiratory diseases spread within families—older children, most of

whom interact with same-age peers in group childcare settings and are therefore frequently

exposed to infectious viruses, “bring home” diseases that infect their younger siblings.

Raw sibling differences. Panel (a) of Figure 1 plots the average number of respiratory

disease hospitalizations (per 100 children) by child age in months during the first year of

life. It shows that, compared to first-born children, younger siblings have two to three times

higher rates of hospitalization for respiratory disease, and that the difference is especially

large when children are two and three months of age. Panel (b) of Figure 1 extends the time

horizon on the x−axis to 60 months (i.e., age five), and demonstrates that the difference in

hospitalization rates between older and younger siblings disappears after age one. This pattern

is consistent with the vast majority of Danish children staying home with their mothers during

their first year of life, and only starting to attend group childcare after they turn one year

old.13 Thus, after age one, younger and older siblings are similarly likely to be exposed to

infectious viruses in group care environments, whereas non-first-borns have exposure before

they turn one through their older siblings bringing home viruses.

Seasonal differences. In Figure 2, we explore the role of respiratory disease seasonality in

driving the observed hospitalization gap between siblings. The two graphs in Figure 2 show
13In Denmark, some form of maternity leave has been available since the beginning of the 20th century. In

1980, mothers had access to 14 weeks of nearly fully paid leave following the birth of a child, and this leave
benefit was extended to 24 weeks (and also began to include fathers) in 1985 (Rasmussen, 2010). Subsequently,
additional weeks of leave were added with reduced benefit compensation. By 2002, new parents could receive
up to 52 weeks of parental leave with partial pay. The majority of this leave is used by mothers (see, e.g.,
Beuchert et al., 2016).
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the average number of respiratory disease hospitalizations for older and younger siblings,

respectively, separately by season of birth. These graphs reveal three facts. First, children

are more likely to be hospitalized for respiratory disease during the winter when common

respiratory disease outbreaks (such as RSV) are more prevalent—children born in November,

December, and January have highest hospitalization rates in the first three months of life;

those born in August, September, and October have highest hospitalization rates at 3 to 6

months old; those born in May, June, and July have highest hospitalization rates at 7 to 9

months old; and those born in February, March, and April have highest hospitalization rates

at 10 to 12 months old. Second, younger siblings have higher hospitalization rates than older

siblings regardless of season of birth. Third, out of all sub-groups considered, younger siblings

born in the winter months have the highest hospitalization rates when they are two to three

months old, suggesting that they are particularly susceptible to severe respiratory infections

during early infancy.

Birth spacing differences. Lastly, in Figure 3, we examine differences in these patterns

across siblings with different birth spacing gaps. Each graph plots the average number of

respiratory disease hospitalizations per 100 children by age in months of the older siblings (on

the left) and the younger siblings (on the right), separately by season of birth and for different

birth spacing gaps. The graphs demonstrate that younger siblings born in winter months

have the highest hospitalization rates regardless of birth spacing, and that the difference

in hospitalizations between younger and older siblings gets much smaller as birth spacing

increases. This pattern is consistent with siblings having more interactions that facilitate

disease spread when their age difference is smaller, and with the older siblings—i.e., the

ones who “bring home” disease—being more susceptible to infection when they are younger

themselves (since the age of the older siblings observed in the right-hand graphs in Figure 3

falls when the birth spacing gap is smaller).

In sum, the observed patterns in the data—(i) higher hospitalization rates among younger

siblings than older siblings, (ii) a larger sibling hospitalization gap during the winter season,

and (iii) a larger hospitalization gap for more closely spaced siblings—are consistent with the

idea that respiratory disease spreads within the family because older children “bring home”
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viruses that they pick up in their local community (e.g., at their childcare center). This analysis

informs our empirical strategy for estimating the causal effects of early childhood respiratory

disease exposure: We focus on exposure during the first year of life, leverage variation in local

respiratory disease outbreaks among slightly older children, and analyze differential effects

across older versus younger siblings.

3.2 Empirical Strategy for Estimating Causal Effects of Early Life

Respiratory Disease Exposure

Our main independent variable is designed to capture respiratory disease exposure during the

first year of life from slightly older children in the local community. We begin by using the

National Patient Register data to obtain the number of respiratory disease hospitalizations

per 100 children aged 13 to 71 months in each municipality and calendar year-month over

our analysis time frame.14 To allow for an informative visualization of the variation in this

respiratory hospitalization rate, in Appendix Figure A1, we plot the raw month-by-month

values of the rate in each of Denmark’s 15 most populated municipalities over the period of

January 1988 to December 1992. Consistent with our descriptive analysis above, we observe

a strong seasonal pattern, with a higher hospitalization rate during the winter months in all

locations. At the same time, there is a substantial amount of variation in children’s respiratory

hospitalizations across municipalities in any given month, as well as within each municipality

over time. In Appendix Figure A2, we demonstrate the central source of variation used to

identify the key estimates in our empirical model (described in more detail below)—we use

data for all municipalities in Denmark for the entire sample period, regress the hospitalization

rate on municipality and year-month fixed effects, and plot the distribution of the residuals.

The figure demonstrates that there remains a substantial amount of variation in respiratory

disease hospitalizations even after location and time fixed effects are partialled out.

Next, for each child in our sibling analysis sample, we assign this monthly respiratory

hospitalization rate to each month of their first year of life based on their municipality of

residence in that month. Importantly, if a given child has an older sibling who is between 13
14We use 71 months (i.e., 5 years and 11 months) as the upper age limit to capture respiratory disease spread

among preschool-aged children, most of whom are in group childcare environments. Children start primary
school at age 6 in Denmark.
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and 71 months of age at any point during their first year of life, we exclude the older sibling

from the hospitalization rate. Finally, we define the disease exposure index as the sum of the

monthly hospitalization rates over the 12 months of each child’s first year of life. Thus, our

index captures a child’s cumulative respiratory disease exposure before age one from slightly

older children in their municipality. While our baseline models include all hospitalizations

with a primary diagnosis of a respiratory condition in the index, in some analyses, we also use

an index that only includes hospitalizations for RSV.

Our empirical models estimate the differential effect of the respiratory disease exposure

index on younger versus older siblings. Specifically, our regression models take the form:

Y a
itm = β0 + β1Y oungeri + β2Indexitm + β3Y oungeri × Indexitm + µm + θt + γ′Xi + εitm (1)

for each child i born in year-month t in municipality m. Y a
itm is an outcome measured at age

a. Y oungeri is an indicator set to 1 for younger siblings, and captures birth order effects

on our outcomes of interest. Indexitm is the respiratory disease exposure index described

above. µm are municipality fixed effects that account for time-invariant geographic differences

in exposure to infectious diseases and in other determinants of our outcomes. θt are year

and month of birth fixed effects that control for cohort trends. Xi is a vector of individual

and family background control variables measured in the year of birth: indicator for the child

being male, mother’s age and age squared, indicators for mother’s education level (less than

high school, high school degree, college degree or higher), and an indicator for parents being

married or cohabiting. We also control for the natural log of the mother’s, father’s, and total

family income, as well as indicators for each parent being in the labor force, in the year before

childbirth. We cluster standard errors on the municipality level.

Identifying assumption. The key coefficient of interest in model (1), β3, measures the

differential impact on younger siblings relative to older siblings of an additional respiratory

disease hospitalization per 100 children aged 13–71 months in the child’s municipality during

their first year of life. Interpreting this coefficient as representing a causal impact of respiratory

disease exposure relies on an assumption that there are no unobserved municipality-specific

time-varying factors that are (a) correlated with respiratory disease prevalence, (b) influence
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children’s outcomes, and (c) differentially impact younger versus older children in a family.

While this assumption is not directly testable, we assess its plausibility in several ways.

First, we investigate the sensitivity of our main results across specifications that include

various controls, including municipality-specific linear trends and mother fixed effects. As we

show below, our results are generally robust across these models.

Second, we estimate model (1) without the controls inXi and instead using theXi variables

as outcomes (Pei et al., 2019). Results are presented in Appendix Table A1. We find that

only one out of the 11 interaction coefficients reported in this table is statistically significant—

mothers of younger siblings are slightly older in municipalities with higher respiratory disease

exposure indices. We control for maternal age in all of our analyses.

Third, we construct two indices based on non-infectious diseases, in which instead of us-

ing children’s hospitalizations for respiratory conditions, we instead use: (i) non-infectious

digestive diseases, and (ii) injuries and poisonings. If the differential likelihood of hospitaliza-

tion for respiratory conditions for younger compared to older children reflects differences in

parental healthcare-seeking behavior (i.e., parents are more likely to go to the hospital with

their second-born than their first-born at the same level of underlying illness), then we might

expect similar patterns to emerge for other non-infectious childhood health shocks, such as

digestive issues or accidents. Yet when we estimate model (1) using the two placebo indices

and hospitalizations in the first year of life for these causes, we do not find evidence in support

of this hypothesis (see Appendix Tables A2 and A3). If anything, we find that younger chil-

dren are less likely to be hospitalized for these causes, and there is no evidence of a significant

interaction between the placebo index and the younger child indicator.15

Finally, we analyze whether our respiratory disease index differentially predicts hospital-

ization rates for non-infectious conditions for younger versus older siblings. When we estimate

model (1) with hospitalizations for non-infectious digestive diseases and for injuries and poi-

sonings in the first year of life as dependent variables, we do not find any evidence of a positive

interaction coefficient between the disease index and the younger sibling indicator (see Ap-

pendix Tables A4 and A5, respectively). If anything, it appears that younger siblings are
15Note the fact that we observe main effects of the placebo indices on hospitalizations for the same causes

makes sense, as they are likely driven by underlying local and seasonal factors (e.g., icy conditions may increase
the local injury rate among kids).
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differentially somewhat less likely to be hospitalized for these causes when the respiratory

disease index is higher (although the interaction coefficients are only marginally significant,

and only in some of the models).

Overall, these analyses support our identifying assumption, and suggest that our model

is likely to yield causal estimates of the differential effects of respiratory disease exposure in

early childhood for younger relative to older siblings.

Sample means. Table 1 presents means of some of the key variables in our analysis, sep-

arately for the older and younger siblings in the sample. The first panel highlights some

differences in child outcomes by birth order. Compared to older siblings, younger siblings

have higher average birth weight (3588.4 versus 3430.7 grams for younger versus older sib-

lings, respectively). The average values of the respiratory disease exposure index for older

and younger siblings are similar: 2.8 and 2.9 hospitalizations per 100 children, respectively.

However, despite the slight advantage in health at birth (which has been found in other set-

tings, see, e.g. Brenøe and Molitor, 2018; Pruckner et al., 2021) and similar local exposure to

respiratory disease, younger siblings’ average number of hospitalizations for respiratory con-

ditions during their first year of life is nearly twice the average for older siblings (0.090 and

0.047 for younger and older siblings, respectively). The relative difference is even larger for

RSV hospitalizations during the first year of life, with younger siblings’ average number of

hospitalizations three times higher relative to older siblings.16 Moreover, consistent with prior

literature on the impacts of birth order (e.g., Black et al., 2005), younger siblings have lower

academic and economic outcomes than their older counterparts.

The second panel shows that mothers are on average aged 26.8 years at the time of their

first birth and 30.3 years at the time of their second birth. Approximately 4.5 percent of

mothers in our sample are foreign-born. About 75.1 and 78.9 percent of mothers have a

high school degree at the time of the first and second birth, respectively, while 30.2 and 36.8

percent have a college degree, respectively. Approximately 80 percent of parents are married

or cohabiting at the time of the first birth, while 93.8 percent are married or cohabiting at
16The average number of hospitalizations for all respiratory conditions among the 1994+ cohorts, for whom

we observe RSV-specific hospitalizations, is similar to the overall sample that includes older cohorts: 0.099
and 0.045 for younger and older siblings, respectively.
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the time of the second. Household income is slightly higher at the time of the second than

the first birth.

4 Results

Effects of local respiratory disease exposure on children’s respiratory hospitaliza-

tions. Panel A of Table 2 presents results from estimating equation (1) using as the outcome

the number of hospitalizations during the first year of a child’s life that have a primary di-

agnosis of a respiratory condition. We report the coefficients on the indicator denoting the

younger sibling, the respiratory disease exposure index (expressed as the number of respiratory

disease hospitalizations per 100 children aged 13 to 71 months), and the interaction of these

two variables. Column (1) shows that, consistent with the graphical evidence in Figures 1

through 3, younger siblings on average have 0.039 more (57.4 percent relative to the sample

mean) hospitalizations for a respiratory condition before age one than their older counterparts.

Column (2) shows that there is a positive correlation between the disease exposure index and

the likelihood of hospitalization before age one in the overall siblings sample, and column (3)

demonstrates that the coefficients on the younger sibling indicator and the disease exposure

index do not change when they are both included in the same regression model. Once we in-

clude the interaction term in columns (4) and (5), we find that there is a significant differential

effect of local respiratory disease exposure on younger siblings relative to older siblings. In

particular, we find that an additional respiratory hospitalization per 100 children aged 13–71

months in a municipality increases the younger sibling’s number of hospitalizations during

the first year of life by an average of 0.012 (18 percent), as compared to the older sibling.

This relationship is robust across specifications without and with family background control

variables (columns 4 and 5, respectively). In the bottom row of the table, we report the

magnitude of the differential effect on younger siblings relative to older siblings of an increase

in the disease exposure index from the 25th to the 75th percentile of the index distribution.

This magnitude amounts to a 0.021 differential increase in the number of respiratory disease

hospitalizations in the first year of life, which represents an additional 30.9 percent relative to

the sample mean.
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We also use the RSV-specific index to analyze RSV hospitalizations in the first year of life

in Panel B of Table 2, and find similar results in relative terms. We estimate that an additional

RSV hospitalization per 100 children aged 13–71 months in a municipality increases a younger

child’s number of RSV hospitalizations in the first year of life by an average of 0.046 more

than their older sibling’s RSV hospitalizations at the same age. Moving from the 25th to the

75th percentile of the RSV index distribution amounts to a 0.005 differential increase in the

number of RSV hospitalizations, or 27.8 percent at the sample mean.

Effects of local respiratory disease exposure before age one on long-term outcomes.

Having established that local respiratory disease exposure among slightly older children pre-

dicts children’s own hospitalizations for respiratory conditions before age one, and that this

effect is much larger for younger relative to older siblings, we proceed to analyze children’s

long-term educational and economic outcomes.

Tables 3 and 4 present results for high school and college graduation by age 30, respectively.

We find an overall birth order effect—younger siblings are on average 5.1 and 9.0 percentage

points less likely to graduate high school and college, respectively, than their older counter-

parts. We do not observe an overall effect of early life disease exposure on these outcomes—the

coefficients on the disease exposure index in columns (2) and (3) are very small in magnitude

and insignificant. At the same time, column (4) shows that the younger siblings experience an

adverse effect of early life respiratory disease exposure on educational attainment compared

to older siblings, at least when it comes to the likelihood of high school graduation (Table

3). In particular, column (4) of Table 3 shows that moving from the 25th to the 75th per-

centile in the respiratory disease exposure index distribution is associated with an additional

0.4 percentage point reduction in the likelihood of high school graduation for younger siblings

relative to older siblings.17

Tables 5 and 6 report results for labor force participation and log income (conditional on
17We also present results using as outcomes standardized 9th grade Danish and math test scores in Appendix

Tables A6 and A7, respectively. We find suggestive evidence that younger children experience a differential
penalty from local respiratory disease exposure in early life. An additional respiratory hospitalization in the
municipality per 100 children aged 13–71 months reduces the 9th grade Danish test score by about 0.009 of
a standard deviation more for younger siblings than older siblings (this coefficient is marginally significant at
the 10% level). The 25th to 75th percentile increase in the disease index amounts to an additional 0.016 of a
standard deviation penalty on the Danish test score for the younger siblings relative to the older siblings. We
do not observe a statistically significant impact on math test scores.
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being employed) at age 30. Again, consistent with the prior literature, younger siblings have

worse labor market outcomes compared to their older counterparts. We do not observe any

significant impact of early life respiratory disease exposure on labor force participation in Table

5, but we do see a negative impact on income in Table 6, with younger siblings experiencing

an additional penalty. Column (4) of Table 6 demonstrates that moving from the 25th to the

75th percentile in the respiratory disease exposure index distribution is associated with an

additional 1.3 percent reduction in age-30 income (conditional on employment) for younger

relative to older siblings.

Magnitudes. The magnitudes of the long-term effects of respiratory disease exposure during

infancy that we find are comparable to the estimates of impacts of other early-life shocks found

in the literature. Specifically, we show that moving from the 25th to the 75th percentile of the

respiratory disease index distribution is associated with an additional 1.3 percent reduction in

adult earnings for second-born children. This effect size is similar to the earnings impact of a

10 percent reduction in birth weight (Black et al., 2007) or a 10 percent increase in ambient

air pollution in one’s year of birth (Isen et al., 2017b). It also corresponds to about half

of the effect of in utero exposure to the 1918 Spanish Influenza pandemic (Almond, 2006)

and one-fifth of the effect of in utero exposure to a maternal influenza infection that requires

hospitalization (Schwandt, 2018).18

It is additionally helpful to compare our estimates to those found in studies evaluating poli-

cies that reduce disease prevalence in the population. For example, Bhalotra and Venkatara-

mani (2015) find that moving from the 75th to the 25th percentile in the pneumonia infection

rate following the introduction of sulfa drugs leads to a 2.1 percent increase in adult income

among exposed cohorts. Bütikofer and Salvanes (2020) document a 0.8 percent increase in

adult income for cohorts who were in school during and after a tuberculosis control campaign

in Norwegian municipalities that had above-median pre-campaign tuberculosis levels.

Lastly, we benchmark our estimates against the literature on birth order. In seminal work,

Black et al. (2005) find an earnings disadvantage of 1.2 to 4.2 percent for second-born siblings

compared to those who are first-born. Our birth order effect is within this range—we find a
18Note that our estimates represent intent-to-treat effects as not every child gets sick in response to exposure

to a higher respiratory disease index.
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2.8 percent income penalty for younger compared to older siblings in regressions that exclude

the interaction term between the respiratory disease index and the younger sibling indicator

(see Columns (1) and (3) of Table 6). However, when the interaction term is included, the

main effect of birth order decreases in magnitude and becomes statistically insignificant. This

result suggests that an important part of the overall birth order effect on income could be

explained by the second-born child’s higher vulnerability to respiratory disease during infancy.

Differential effects by age of observation. Sub-figures (a) and (b) of Figure 4 plot the

coefficients and 95% confidence intervals on our key variable—the interaction between the

younger sibling indicator and the respiratory disease exposure index—from separate models

that use as outcomes the annual number of respiratory disease hospitalizations and RSV hos-

pitalizations, respectively, measured at different ages denoted on the x−axis. We use our

preferred model with municipality and cohort fixed effects and family background controls.

Consistent with results presented above, we find a large differential effect on hospitalizations

before age one among younger siblings. However, this effect dissipates as we analyze hospi-

talizations at older ages. If anything, it appears that respiratory disease exposure in the first

year of life is associated with a reduction in the number of overall respiratory hospitalizations

at ages 3 to 4, although we do not see such a pattern for RSV hospitalizations specifically.

This pattern of results is consistent with the immunity formation hypothesis (Holt and Jones,

2000; M’Rabet et al., 2008; Côté et al., 2010; Fink et al., 2021) for some respiratory conditions,

but not others, such as RSV. At the same time, our findings suggest that the differential ad-

verse effects on long-term educational and economic outcomes of early-life respiratory disease

exposure among younger siblings are not driven solely by worse health in later childhood.

Figure 5 examines differential effects on educational attainment and labor market outcomes

measured at ages 18 to 34. The pattern of coefficients suggests that the negative differential

effects on high school and college graduation for younger siblings are fairly stable from the

age at which these outcomes can be affected (i.e., starting around age 19 for high school

graduation, and age 23 for college graduation), although not all coefficients are statistically

significant due to the smaller sample sizes that we rely on when studying older cohorts. For

labor force participation, we observe a positive differential effect at ages 23 to 25, which is
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consistent with selection out of higher education and into work, and a null effect at later ages.

For income conditional on being employed, little effect is found at ages 18–25, but the negative

differential effect can be seen from age 26 onward.

Heterogeneous effects across sub-groups. Sub-figures (c) and (d) of Figure 4 present

results from models estimated on different sub-samples of the data for our main short-run

outcomes, the number of overall respiratory disease hospitalizations by age one and the number

of RSV hospitalizations by age one, respectively. We consider differences in effects by parental

socio-economic status (defined as the mother’s years of education being above or below the

median in the distribution), child health at birth (birth weight above and below the median,

as well as low-birth-weight and non-low-birth-weight children), the gender composition of the

siblings, and the birth spacing between the siblings. We find similar estimates across all sub-

groups, with one important exception: low birth weight children (those whose birth weight

is below 2,500 grams) experience a much larger differential increase in respiratory disease

hospitalizations and RSV-specific hospitalizations when they are the younger siblings. We

have also analyzed heterogeneous impacts on long-term outcomes, but did not detect any

significant differences across sub-groups, potentially due to lower sample sizes in these long-

run analyses.

Sensitivity of results. We examine the sensitivity of our results across different specifi-

cations and different ways of measuring respiratory disease exposure in Appendix Tables A8

through A12. Specifically, for each our outcomes of interest, we estimate different versions

of model (1). Column (1) of each table presents the baseline model where we have munic-

ipality and cohort fixed effects and family background controls. Column (2) drops family

background controls. If the disease index is correlated with observed family characteristics,

this would result in a change in the estimated interaction effect. The fact that the coefficient

remains virtually unchanged suggests this is not the case, which also alleviates concerns about

a potential bias due to a correlation with unobserved family characteristics. Column (3) adds

municipality-specific linear time trends which control for unobserved municipality level factors

that change over time, while column (4) adds mother fixed effects that eliminate a potential

bias from unobserved genetic and family characteristics common among siblings.
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In our baseline analysis, our respiratory disease index is based on the number of hospitaliza-

tions with a primary diagnosis of a respiratory condition (or RSV). Columns (5) and (6) check

the robustness of the results to alternative ways of constructing the disease index. Column (5)

calculates the disease index based on number of hospitalizations including both primary and

non-primary diagnoses for respiratory conditions, while in column (6) we construct it based

on the number of children with at least one primary respiratory disease diagnosis (i.e., we

count the number of children rather than the total number of hospitalizations). Our results

are quite robust across these different modeling choices.

5 Conclusion

Respiratory illnesses are very common among young children, especially in families with more

than one child. Despite their regular occurrence, there is limited population-level evidence

on the role of intra-family transmission, or on the long-term causal impacts of exposure to

endemic respiratory disease during infancy. This paper uses linked administrative data from

Denmark spanning four decades to document the importance of birth order in driving sus-

ceptibility to respiratory infection. Specifically, we find that younger siblings are two to three

times more likely to be hospitalized for respiratory conditions during their first year of life

compared to the older siblings at the same age, and this disparity is especially large when

hospitalizations are measured in the first three months of life. Additional analyses of the

seasonality in hospitalizations and heterogeneity across siblings with different birth spacing

gaps point to the importance of intra-family transmission in explaining this birth order effect:

older children “bring home” common respiratory viruses (such as RSV), making their younger

siblings susceptible to severe illness early in life.

We then combine the birth order variation with variation in local respiratory disease preva-

lence to study long-term effects of early-life disease on human capital and economic outcomes.

We show that exposure to severe respiratory illness during infancy has negative consequences

on both educational and economic outcomes in adulthood. Our results show that moving from

the 25th to the 75th percentile in the local respiratory disease prevalence distribution leads

to a 0.5 percent differential reduction in the likelihood of high school graduation and a 1.3
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percent additional reduction in age-30 earnings for younger compared to older siblings.

The long-term effects that we estimate represent the overall net impacts of respiratory

disease exposure during infancy. Thus, these estimates incorporate any potential benefits

associated with increased immunity, as well as parental responses to the health shocks. In

sum, our findings suggest that policies mitigating the spread of respiratory diseases among

young children may have large long-term benefits, which are likely not incorporated into

current cost-benefit evaluations.
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6 Figures

Figure 1: Number of Respiratory Hospitalizations per 100 Children, by Child Age in Months,
Older versus Younger Siblings

(a) During First Year of Life

(b) During First Five Years of Life

Notes: These figures plot the number of hospitalizations with respiratory illness diagnoses (per 100 children)
by month of age, separately for older and younger siblings in our data.

27



Figure 2: Number of Respiratory Hospitalizations per 100 Children, by Child Age in Months
and Season of Birth, Older versus Younger Siblings

Notes: These figures plot the number of hospitalizations with respiratory illness diagnoses (per 100 children)
by month of age and by the season of birth of the child, separately for older and younger siblings in our data.
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Figure 3: Number of Respiratory Hospitalizations per 100 Children, by Child Age in Months,
Season of Birth, and Birth Spacing, Older versus Younger Siblings

Notes: These figures plot the number of hospitalizations with respiratory illness diagnoses (per 100 children)
by month of age and by the season of birth of the child, separately for older and younger siblings with different
birth spacing gaps in our data.
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Figure 4: Differential Effects of the Respiratory Disease Exposure Index on the Annual Number
of Younger Siblings’ Respiratory and RSV Hospitalizations, by Age of Observation and by
Sub-Group

(a) By Age of Observation, All Resp. (b) By Age of Observation, RSV

(c) By Sub-Group, All Resp. (d) By Sub-Group, RSV

Notes: Sub-figures (a) and (b) plot the coefficients and 95% confidence intervals on the interaction term
between the disease index and the younger sibling indicator from model (1), using as outcomes the annual
number of hospitalizations with all respiratory diagnoses and RSV diagnoses, respectively, measured at ages
specified on the x-axis. Sub-figures (c) and (d) plot these coefficients and 95% confidence intervals for these
two outcomes measured in the first year of life, from models estimated on different sub-samples as specified
on the y-axis.
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Figure 5: Differential Effects of the Respiratory Disease Exposure Index on Younger Siblings’
Long-Run Outcomes, by Age of Observation

(a) High School Graduation (b) College Graduation

(c) Labor Force Participation (d) Income

Notes: These figures plot the coefficients and 95% confidence intervals on the interaction term between the
disease index and the younger sibling indicator from model (1), using outcomes measured at ages specified on
the x-axes.

31



7 Tables

Table 1: Variable Means

Older Siblings Younger Siblings

Child Characteristics and Outcomes

Male Child 0.514 0.514
Birth Weight (grams) 3430.702 3588.422
Respiratory Disease Exposure Index 2.795 2.877
Number of Respiratory Disease Hospitalizations by Age 1 0.047 0.090
RSV Exposure Index 0.107 0.102
Number of RSV Hospitalizations by Age 1 0.009 0.027
Log Income, Age 30 10.805 10.766
Log Wage, Age 30 10.681 10.639
Log Income (conditional on employed), Age 30 11.035 11.004
Log Wage (conditional on employed), Age 30 10.917 10.888
In Labor Force, Age 30 0.805 0.799
Employed, Age 30 0.786 0.780
High School Degree, Age 30 0.849 0.840
College Degree, Age 30 0.447 0.427
Danish Test Score, Grade 9 0.152 0.048
Math Test Score, Grade 9 0.207 0.077

Family Background Characteristics

Mother’s Age at Childbirth 26.824 30.323
Mother is Foreign-Born 0.045 0.045
Mother has High School Degree 0.751 0.789
Mother has College Degree 0.302 0.368
Parents are Married/Cohabiting 0.822 0.938
Log Household Income 11.424 11.600

Observations 588,373 588,373

Notes: This table presents the means of key variables in our analysis separately for older and younger
siblings. The respiratory disease exposure index is the number of inpatient admissions with a respiratory
disease primary diagnosis among children aged 13–71 months per 100 children in the focal child’s munici-
pality of birth during the first year of life, excluding any hospitalizations of an older sibling. Income vari-
ables are reported in 2010 $USD. Test scores are converted into z−scores, which are standardized within
each subject and test year. Test score data are only available for children born in 1986–2003. Maternal ed-
ucational attainment and parental marital/cohabiting status are measured in the year of childbirth, while
household income is measured in the year before childbirth.
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Table 2: Effect of Respiratory Disease Exposure Index on Respiratory Disease Hos-
pitalizations in First Year of Life, Younger versus Older Siblings

(1) (2) (3) (4) (5)

A. All Respiratory Disease Hospitalizations in First Year of Life

Younger 0.039∗∗∗ 0.039∗∗∗ 0.006∗∗∗ 0.017∗∗∗
(0.002) (0.002) (0.002) (0.002)

Disease index 0.017∗∗∗ 0.017∗∗∗ 0.010∗∗∗ 0.010∗∗∗
(0.001) (0.001) (0.001) (0.001)

Younger x disease index 0.011∗∗∗ 0.012∗∗∗
(0.001) (0.001)

Observations 1,176,746 1,176,746 1,176,746 1,176,746 1,176,746
Mean 0.068 0.068 0.068 0.068 0.068
25th to 75th pctile effect size 0.021 0.021

B. RSV Hospitalizations in First Year of Life

Younger 0.018∗∗∗ 0.018∗∗∗ 0.013∗∗∗ 0.016∗∗∗
(0.001) (0.001) (0.001) (0.001)

Disease index 0.040∗∗∗ 0.040∗∗∗ 0.016∗∗∗ 0.016∗∗∗
(0.004) (0.004) (0.003) (0.003)

Younger x disease index 0.046∗∗∗ 0.046∗∗∗
(0.004) (0.004)

Observations 697,128 697,128 697,128 697,128 697,128
Mean 0.018 0.018 0.018 0.018 0.018
25th to 75th pctile effect size 0.005 0.005

Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes

Notes: Each column in each panel in the table presents results from estimating different versions of
model (1). In Panel A, the outcome is the number of hospitalizations with any respiratory disease
primary diagnosis during the first year of the child’s life. In Panel B, the outcome is the number of
hospitalizations with an RSV primary diagnosis during the first year of the child’s life. We report
the coefficients on the indicator variable denoting the younger sibling (“Younger”), the respiratory
disease exposure index (“Disease index”), and the interaction of these two variables. The respiratory
disease exposure index is the number of inpatient admissions with any respiratory disease primary
diagnosis among children aged 13–71 months per 100 children in each child’s municipality of birth
during the first year of life, excluding any hospitalizations of an older sibling. All specifications
include municipality, year of birth, and month of birth fixed effects. Column (5) also includes the
following family background controls: indicator for child gender, mother’s age and age squared, indi-
cator for the mother being foreign-born, indicators for mother’s education level (high school degree,
college degree or higher), and an indicator for the parents being married or cohabiting at the time
of childbirth. Standard errors are clustered on the child’s municipality of birth in all models. The
“25th to 75th pctile effect size” row reports the magnitude of the differential effect of an increase
in the disease exposure index from the 25th to the 75th percentile of the distribution for younger
siblings. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table 3: Effect of Respiratory Disease Exposure Index in First Year of
Life on Likelihood of High School Graduation, Younger versus Older
Siblings

Graduated High School by Age 30

(1) (2) (3) (4)
Younger -0.051∗∗∗ -0.051∗∗∗ -0.044∗∗∗

(0.003) (0.003) (0.004)
Disease index 0.003 0.003 0.006∗∗

(0.003) (0.003) (0.003)
Younger x disease index -0.003∗∗

(0.001)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 148,876 148,876 148,876 148,876
Mean 0.844 0.844 0.844 0.844
25th to 75th pctile effect size -0.004

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is an indicator for graduating high school by age 30. Standard
errors are clustered on the child’s municipality of birth. Significance levels: * p<0.1
** p<0.05 *** p<0.01.

Table 4: Effect of Respiratory Disease Exposure Index in First Year of
Life on Likelihood of College Graduation, Younger versus Older Siblings

Graduated College by Age 30

(1) (2) (3) (4)
Younger -0.090∗∗∗ -0.090∗∗∗ -0.082∗∗∗

(0.004) (0.004) (0.006)
Disease index -0.001 -0.000 0.002

(0.003) (0.003) (0.003)
Younger x disease index -0.003

(0.002)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 148,876 148,876 148,876 148,876
Mean 0.437 0.437 0.437 0.437
25th to 75th pctile effect size -0.004

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is an indicator for graduating college by age 30. Standard er-
rors are clustered on the child’s municipality of birth. Significance levels: * p<0.1
** p<0.05 *** p<0.01.
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Table 5: Effect of Respiratory Disease Exposure Index in First Year
of Life on Labor Force Participation at Age 30, Younger versus Older
Siblings

Labor Force Participation at Age 30

(1) (2) (3) (4)
Younger -0.018∗∗∗ -0.018∗∗∗ -0.016∗∗∗

(0.003) (0.003) (0.006)
Disease index -0.000 -0.000 0.000

(0.003) (0.003) (0.003)
Younger x disease index -0.001

(0.002)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 165,736 165,736 165,736 165,736
Mean 0.802 0.802 0.802 0.802
25th to 75th pctile effect size -0.001

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is an indicator for being in the labor force at age 30. Standard
errors are clustered on the child’s municipality of birth. Significance levels: * p<0.1
** p<0.05 *** p<0.01.

Table 6: Effect of Respiratory Disease Exposure Index in First Year
of Life on Log Income (Conditional on Employed) at Age 30, Younger
versus Older Siblings

Log Income at Age 30

(1) (2) (3) (4)
Younger -0.028∗∗∗ -0.028∗∗∗ -0.005

(0.003) (0.003) (0.005)
Disease index -0.006∗∗ -0.006∗∗ 0.002

(0.003) (0.003) (0.003)
Younger x disease index -0.011∗∗∗

(0.002)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 104,806 104,806 104,806 104,806
Mean 11.019 11.019 11.019 11.019
25th to 75th pctile effect size -0.013

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is the natural log of gross income (conditional on employed)
at age 30, converted into 2010 USD$. Standard errors are clustered on the child’s
municipality of birth. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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A Appendix Figures

Figure A1: Variation in the Respiratory Disease Index Over Time, 15 Largest Municipalities

Notes: This figure shows the monthly variation in the respiratory disease index over time for each of the
15 largest municipalities (in terms of population size) in Denmark. The respiratory disease index refers to
the number of respiratory disease hospitalizations per 100 children aged 13 to 71 months in each calendar
year-month.
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Figure A2: Distribution of Respiratory Disease Index Residuals from Municipality and Year-
Month Fixed Effects

Notes: This histogram plots the residuals after regressing the respiratory disease index on municipality and
year-month fixed effects. The respiratory disease index refers to the number of respiratory disease hospital-
izations per 100 children aged 13 to 71 months in each calendar year-month.
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B Appendix Tables

Table A1: Disease Exposure Index and Family Background Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Male Mother’s
Age

Mother
Foreign-Born

Mother HS
Graduated

Mother College
Graduated

Parents Married/
Cohabiting

Father
Log Income

Mother
Log Income

Household
Log Income

Father
Employed

Mother
Employed

Younger -.00215 2.78∗∗∗ -.00703∗ .01 .0417∗∗∗ .102∗∗∗ .135∗∗∗ .166∗∗∗ .133∗∗∗ .0523∗∗∗ .0165
(.0029) (.0509) (.00407) (.00896) (.00494) (.00541) (.026) (.0178) (.0196) (.0147) (.0153)

Disease index -.00107 -.138∗∗∗ -.000119 .00314 -.0151∗∗ -.00717∗∗∗ -.014∗∗∗ -.00876∗∗∗ -.0122∗∗∗ -.00671∗∗∗ -.00107
(.000794) (.0337) (.00149) (.0021) (.00609) (.00267) (.00405) (.00311) (.00365) (.00239) (.00278)

Younger x disease index .000442 .109∗∗∗ .000933 -.00176 .00072 .00115 .00486 .00267 .00324 -.00198 -.00179
(.000961) (.0325) (.002) (.0041) (.00119) (.00197) (.00674) (.00575) (.0052) (.00381) (.00396)

Notes: Each column in the table presents results from estimating model (1), separately for each of the dependent variables listed at the top. We report the coefficients on the indicator variable denoting
the younger sibling (“Younger”), the respiratory disease exposure index (“Disease index”), and the interaction of these two variables. The disease exposure index is the number of inpatient admissions
with a respiratory disease primary diagnosis among children aged 13–71 months per 100 children in each child’s municipality of birth during the first year of life, excluding any hospitalizations of an
older sibling. See notes under Table 2 for more details about the specifications. Standard errors are clustered on the child’s municipality of birth in all models. Significance levels: * p<0.1 ** p<0.05 ***
p<0.01.
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Table A2: Effect of Non-Infectious Digestive Disease Exposure Index on Non-Infectious Digestive Disease Hospi-
talizations in First Year of Life, Younger versus Older Siblings

Non-infectious Digestive Disease Hospitalizations in First Year of Life (*1000)

(1) (2) (3) (4) (5)
Younger -0.392∗∗∗ -0.397∗∗∗ -0.521∗∗ -0.425∗

(0.146) (0.150) (0.242) (0.233)
Non-infectious disease index 5.138∗∗∗ 5.149∗∗∗ 4.527∗∗∗ 4.511∗∗∗

(1.559) (1.569) (1.589) (1.591)
Younger x Non-infectious disease index 1.014 1.049

(1.341) (1.348)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 697,128 697,128 697,128 697,128 697,128
Mean 2.275 2.275 2.275 2.275 2.275
25th to 75th pctile effect size 0.109 0.113

Notes: Each column in each panel in the table presents results from estimating different versions of model (1), with a disease index
based on non-infectious digestive disease hospitalizations instead of respiratory disease hospitalizations. The outcome is the number of
hospitalizations with any non-infectious digestive disease primary diagnosis during the first year of the child’s life. We report the coef-
ficients on the indicator variable denoting the younger sibling (“Younger”), the non-infectious disease exposure index (“Non-infectious
disease index”), and the interaction of these two variables. The non-infectious disease exposure index is the number of inpatient admis-
sions with any non-infectious digestive disease primary diagnosis among children aged 13–71 months per 100 children in each child’s
municipality of birth during the first year of life, excluding any hospitalizations of an older sibling. All specifications include munic-
ipality, year of birth, and month of birth fixed effects. Column (5) also includes the following family background controls: indicator
for child gender, mother’s age and age squared, indicator for the mother being foreign-born, indicators for mother’s education level
(high school degree, college degree or higher), and an indicator for the parents being married or cohabiting at the time of childbirth.
Standard errors are clustered on the child’s municipality of birth in all models. The “25th to 75th pctile effect size” row reports the
magnitude of the differential effect of an increase in the disease exposure index from the 25th to the 75th percentile of the distribution
for younger siblings. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A3: Effect of Injury (incl. Poisoning) Exposure Index on Injury (incl. Poisoning) Hospital-
izations in First Year of Life, Younger versus Older Siblings

Injury (incl. Poisonings) Hospitalizations in First Year of Life (*1000)

(1) (2) (3) (4) (5)
Younger -2.427∗∗∗ -2.461∗∗∗ 1.667 8.454∗∗∗

(0.842) (0.854) (2.120) (2.396)
Injury index 2.288∗∗∗ 2.289∗∗∗ 2.387∗∗∗ 2.320∗∗∗

(0.188) (0.188) (0.210) (0.205)
Younger x injury index -0.238∗ -0.248∗

(0.134) (0.141)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 697,128 697,128 697,128 697,128 697,128
Mean 50.965 50.965 50.965 50.965 50.965
25th to 75th pctile effect size -1.607 -1.678

Notes: Each column in each panel in the table presents results from estimating different versions of model (1),
with an index based on injury (incl. poisoning) hospitalizations instead of respiratory disease hospitalizations. The
outcome is the number of hospitalizations with any injury (incl. poisoning) primary diagnosis during the first year
of the child’s life. We report the coefficients on the indicator variable denoting the younger sibling (“Younger”),
the injury exposure index (“Injury index”), and the interaction of these two variables. The injury exposure index is
the number of inpatient admissions with any injury (incl. poisoning) primary diagnosis among children aged 13–71
months per 100 children in each child’s municipality of birth during the first year of life, excluding any hospital-
izations of an older sibling. All specifications include municipality, year of birth, and month of birth fixed effects.
Column (5) also includes the following family background controls: indicator for child gender, mother’s age and age
squared, indicator for the mother being foreign-born, indicators for mother’s education level (high school degree,
college degree or higher), and an indicator for the parents being married or cohabiting at the time of childbirth.
Standard errors are clustered on the child’s municipality of birth in all models. The “25th to 75th pctile effect size”
row reports the magnitude of the differential effect of an increase in the disease exposure index from the 25th to
the 75th percentile of the distribution for younger siblings. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A4: Effect of Respiratory Disease Exposure Index on Non-Infectious Digestive Disease Hospitaliza-
tions in First Year of Life, Younger versus Older Siblings

Non-infectious Digestive Disease Hospitalizations in First Year of Life (*1000)

(1) (2) (3) (4) (5)
Younger -0.392∗∗∗ -0.393∗∗∗ 0.248 0.346

(0.146) (0.146) (0.390) (0.377)
Disease index -0.233 -0.235 -0.109 -0.112

(0.156) (0.156) (0.146) (0.146)
Younger x disease index -0.213∗ -0.212∗

(0.121) (0.121)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 697,128 697,128 697,128 697,128 697,128
Mean 2.275 2.275 2.275 2.275 2.275
25th to 75th pctile effect size -0.392 -0.392

Notes: Each column in each panel in the table presents results from estimating different versions of model (1). The out-
come is the number of hospitalizations with any non-infectious digestive disease primary diagnosis during the first year of
the child’s life. We report the coefficients on the indicator variable denoting the younger sibling (“Younger”), the respira-
tory disease exposure index (“Disease index”), and the interaction of these two variables. The disease exposure index is the
number of inpatient admissions with a respiratory disease primary diagnosis among children aged 13–71 months per 100
children in each child’s municipality of birth during the first year of life, excluding any hospitalizations of an older sibling.
All specifications include municipality, year of birth, and month of birth fixed effects. Column (5) also includes the follow-
ing family background controls: indicator for child gender, mother’s age and age squared, indicator for the mother being
foreign-born, indicators for mother’s education level (high school degree, college degree or higher), and an indicator for the
parents being married or cohabiting at the time of childbirth. Standard errors are clustered on the child’s municipality of
birth in all models. The “25th to 75th pctile effect size” row reports the magnitude of the differential effect of an increase in
the disease exposure index from the 25th to the 75th percentile of the distribution for younger siblings. Significance levels:
* p<0.1 ** p<0.05 *** p<0.01.
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Table A5: Effect of Respiratory Disease Exposure Index on Injury (incl. Poisoning) Hospitaliza-
tions in First Year of Life, Younger versus Older Siblings

Injury (incl. Poisonings) Hospitalizations in First Year of Life (*1000)

(1) (2) (3) (4) (5)
Younger -2.427∗∗∗ -2.415∗∗∗ 2.134 8.661∗∗∗

(0.842) (0.840) (2.427) (2.799)
Disease index 2.341∗∗∗ 2.333∗∗∗ 3.228∗∗∗ 3.110∗∗∗

(0.663) (0.661) (0.909) (0.958)
Younger x disease index -1.509∗ -1.475

(0.789) (0.896)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 697,128 697,128 697,128 697,128 697,128
Mean 50.965 50.965 50.965 50.965 50.965
25th to 75th pctile effect size -2.783 -2.720

Notes: Each column in each panel in the table presents results from estimating different versions of model (1),
with an index based on injury (incl. poisoning) hospitalizations instead of respiratory disease hospitalizations. The
outcome is the number of hospitalizations with any injury (incl. poisoning) primary diagnosis during the first year
of the child’s life. We report the coefficients on the indicator variable denoting the younger sibling (“Younger”),
the respiratory disease exposure index (“Disease index”), and the interaction of these two variables. The disease
exposure index is the number of inpatient admissions with a respiratory disease primary diagnosis among children
aged 13–71 months per 100 children in each child’s municipality of birth during the first year of life, excluding any
hospitalizations of an older sibling. All specifications include municipality, year of birth, and month of birth fixed
effects. Column (5) also includes the following family background controls: indicator for child gender, mother’s age
and age squared, indicator for the mother being foreign-born, indicators for mother’s education level (high school
degree, college degree or higher), and an indicator for the parents being married or cohabiting at the time of child-
birth. Standard errors are clustered on the child’s municipality of birth in all models. The “25th to 75th pctile effect
size” row reports the magnitude of the differential effect of an increase in the disease exposure index from the 25th
to the 75th percentile of the distribution for younger siblings. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A6: Effect of Respiratory Disease Exposure Index in First Year
of Life on 9th Grade Danish Test Score, Younger versus Older Siblings

9th Grade Danish Test Score

(1) (2) (3) (4)
Younger -0.190∗∗∗ -0.190∗∗∗ -0.164∗∗∗

(0.006) (0.006) (0.015)
Disease index -0.002 -0.002 0.003

(0.004) (0.004) (0.005)
Younger x disease index -0.009∗

(0.005)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 474,184 474,184 474,184 474,184
Mean 0.100 0.100 0.100 0.100
25th to 75th pctile effect size -0.016

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is the 9th grade Danish test score, which is converted into
a z−score, standardized within each subject and test year. Test score data are
only available for children born in 1986–2003. Standard errors are clustered on the
child’s municipality of birth. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A7: Effect of Respiratory Disease Exposure Index in First Year
of Life on 9th Grade Math Test Score, Younger versus Older Siblings

9th Grade Math Test Score

(1) (2) (3) (4)
Younger -0.239∗∗∗ -0.239∗∗∗ -0.219∗∗∗

(0.010) (0.010) (0.013)
Disease index -0.001 -0.001 0.003

(0.004) (0.004) (0.004)
Younger x disease index -0.007

(0.005)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 475,944 475,944 475,944 475,944
Mean 0.142 0.142 0.142 0.142
25th to 75th pctile effect size -0.012

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is the 9th grade math test score, which is converted into a
z−score, standardized within each subject and test year. Test score data are only
available for children born in 1986–2003. Standard errors are clustered on the child’s
municipality of birth. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A8: Robustness of Results on Respiratory Disease Hospitalizations in First Year of Life

(1) (2) (3) (4) (5) (6)

A. Respiratory Disease Hospitalizations in First Year of Life

Younger 0.017∗∗∗ 0.006∗∗∗ 0.016∗∗∗ 0.036∗∗∗ 0.015∗∗∗ 0.017∗∗∗
(0.002) (0.002) (0.002) (0.005) (0.002) (0.002)

Disease index 0.010∗∗∗ 0.010∗∗∗ 0.007∗∗∗ 0.004∗∗∗
(0.001) (0.001) (0.001) (0.002)

Younger x disease index 0.012∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.013∗∗∗
(0.001) (0.001) (0.001) (0.001)

Disease index (# Diagnosis) 0.005∗∗∗
(0.001)

Younger x disease index (# Diagnosis) 0.008∗∗∗
(0.000)

Disease index (# Kids) 0.011∗∗∗
(0.001)

Younger x disease index (# Kids) 0.013∗∗∗
(0.001)

Observations 1,176,746 1,176,746 1,176,746 1,176,746 1,176,746 1,176,746
Mean 0.068 0.068 0.068 0.068 0.068 0.068
25th to 75th pctile effect size 0.021 0.021 0.022 0.024 0.021 0.021

B. RSV Hospitalizations in First Year of Life

Younger 0.016∗∗∗ 0.013∗∗∗ 0.016∗∗∗ 0.028∗∗∗ 0.016∗∗∗ 0.016∗∗∗
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Disease index 0.016∗∗∗ 0.016∗∗∗ 0.011∗∗∗ 0.004
(0.003) (0.003) (0.003) (0.006)

Younger x disease index 0.046∗∗∗ 0.046∗∗∗ 0.043∗∗∗ 0.048∗∗∗
(0.004) (0.004) (0.004) (0.007)

Disease index (# Diagnosis) 0.012∗∗∗
(0.002)

Younger x disease index (# Diagnosis) 0.034∗∗∗
(0.004)

Disease index (# Kids) 0.017∗∗∗
(0.003)

Younger x disease index (# Kids) 0.049∗∗∗
(0.004)

Observations 697,128 697,128 697,128 697,128 697,128 697,128
Mean 0.018 0.018 0.018 0.018 0.018 0.018
25th to 75th pctile effect size 0.005 0.005 0.005 0.005 0.005 0.005

Municipality FEs Yes Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes Yes
Family Background Controls Yes No Yes Yes Yes Yes
Mother FEs No No No Yes No No
Municipality Trends No No Yes No No No

Notes: Each column in the table presents results from estimating different versions of model (1). The outcome is the num-
ber of hospitalizations with a respiratory disease primary diagnosis (Panel A) or with a RSV primary diagnosis (Panel B)
during the first year of the child’s life. Column (1) presents results using baseline model. Column (2) drops family back-
ground controls. Column (3) adds municipality-specific linear time trends and Column (4) adds maternal fixed effects.
Column (5) uses a disease index in which we count number of diagnoses for respiratory conditions in hospitalizations in-
cluding both primary and non-primary diagnoses. Column (6) uses a disease index in which we calculate the number of
children with at least one respiratory disease diagnosis (i.e., counting the number of children and not the total number of
diagnoses). See notes under Table 2 for more details about our baseline model and control variables. Standard errors are
clustered on the child’s municipality of birth in all models. The “25th to 75th pctile effect size” row reports the magnitude
of the differential effect of an increase in the disease exposure index from the 25th to the 75th percentile of the distribution
for younger siblings. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A9: Robustness of Results on High School Graduation by Age 30

Graduated High School by Age 30

(1) (2) (3) (4) (5) (6)
Younger -0.044∗∗∗ 0.000 -0.048∗∗∗ -0.008 -0.043∗∗∗ -0.044∗∗∗

(0.004) (0.004) (0.005) (0.008) (0.004) (0.004)
Disease index 0.006∗∗ 0.007∗∗ 0.005∗ 0.009∗

(0.003) (0.003) (0.003) (0.005)
Younger x disease index -0.003∗∗ -0.003 -0.001 -0.004

(0.001) (0.002) (0.002) (0.003)
Disease index (# Diagnosis) 0.005∗∗∗

(0.002)
Younger x disease index (# Diagnosis) -0.002∗∗∗

(0.001)
Disease index (# Kids) 0.006∗

(0.003)
Younger x disease index (# Kids) -0.003∗∗

(0.002)
Municipality FEs Yes Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes Yes
Family Background Controls Yes No Yes Yes Yes Yes
Mother FEs No No No Yes No No
Municipality Trends No No Yes No No No
Observations 148,876 148,876 148,876 148,876 148,876 148,876
Mean 0.844 0.844 0.844 0.844 0.844 0.844
25th to 75th pctile effect size -0.004 -0.004 -0.001 -0.005 -0.004 -0.004

Notes: See notes under Appendix Table A8 for more details about the specifications and variables. The outcome is
an indicator for graduating high school by age 30. Standard errors are clustered on the child’s municipality of birth.
Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A10: Robustness of Results on College Graduation by Age 30

Graduated College by Age 30

(1) (2) (3) (4) (5) (6)
Younger -0.082∗∗∗ -0.014∗ -0.081∗∗∗ -0.038∗∗∗ -0.082∗∗∗ -0.082∗∗∗

(0.006) (0.007) (0.008) (0.011) (0.006) (0.006)
Disease index 0.002 0.003 0.003 0.005

(0.003) (0.003) (0.003) (0.005)
Younger x disease index -0.003 -0.002 -0.004 -0.003

(0.002) (0.004) (0.003) (0.003)
Disease index (# Diagnosis) 0.003

(0.002)
Younger x disease index (# Diagnosis) -0.003∗

(0.002)
Disease index (# Kids) 0.001

(0.003)
Younger x disease index (# Kids) -0.004

(0.002)
Municipality FEs Yes Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes Yes
Family Background Controls Yes No Yes Yes Yes Yes
Mother FEs No No No Yes No No
Municipality Trends No No Yes No No No
Observations 148,876 148,876 148,876 148,876 148,876 148,876
Mean 0.437 0.437 0.437 0.437 0.437 0.437
25th to 75th pctile effect size -0.004 -0.003 -0.005 -0.003 -0.004 -0.004

Notes: See notes under Appendix Table A8 for more details about the specifications and variables. The outcome is
an indicator for graduating college by age 30. Standard errors are clustered on the child’s municipality of birth. Sig-
nificance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A11: Robustness of Results on Labor Force Participation at Age 30

Labor Force Participation at Age 30

(1) (2) (3) (4) (5) (6)
Younger -0.016∗∗∗ -0.000 -0.022∗∗∗ 0.001 -0.015∗∗∗ -0.016∗∗∗

(0.006) (0.005) (0.006) (0.009) (0.005) (0.006)
Disease index 0.000 0.001 -0.000 0.006

(0.003) (0.003) (0.003) (0.005)
Younger x disease index -0.001 -0.002 0.002 -0.004

(0.002) (0.002) (0.002) (0.002)
Disease index (# Diagnosis) 0.001

(0.002)
Younger x disease index (# Diagnosis) -0.001

(0.001)
Disease index (# Kids) -0.000

(0.003)
Younger x disease index (# Kids) -0.001

(0.002)
Municipality FEs Yes Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes Yes
Family Background Controls Yes No Yes Yes Yes Yes
Mother FEs No No No Yes No No
Municipality Trends No No Yes No No No
Observations 165,736 165,736 165,736 165,736 165,736 165,736
Mean 0.802 0.802 0.802 0.802 0.802 0.802
25th to 75th pctile effect size -0.001 -0.002 0.002 -0.005 -0.002 -0.001

Notes: See notes under Appendix Table A8 for more details about the specifications and variables. The outcome is
an indicator for being employed at age 30. Standard errors are clustered on the child’s municipality of birth. Signifi-
cance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A12: Robustness of Results on Log Income (Conditional on Employed) at Age 30

Log Income at Age 30

(1) (2) (3) (4) (5) (6)
Younger -0.005 0.005 -0.010 0.005 -0.006 -0.005

(0.005) (0.005) (0.006) (0.009) (0.005) (0.005)
Disease index 0.002 0.001 -0.000 0.002

(0.003) (0.003) (0.004) (0.006)
Younger x disease index -0.011∗∗∗ -0.010∗∗∗ -0.009∗∗∗ -0.008∗∗

(0.002) (0.002) (0.003) (0.004)
Disease index (# Diagnosis) 0.001

(0.002)
Younger x disease index (# Diagnosis) -0.007∗∗∗

(0.001)
Disease index (# Kids) 0.002

(0.003)
Younger x disease index (# Kids) -0.011∗∗∗

(0.002)
Municipality FEs Yes Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes Yes
Family Background Controls Yes No Yes Yes Yes Yes
Mother FEs No No No Yes No No
Municipality Trends No No Yes No No No
Observations 104,806 104,806 104,806 104,806 104,806 104,806
Mean 11.019 11.019 11.019 11.019 11.019 11.019
25th to 75th pctile effect size -0.013 -0.012 -0.010 -0.009 -0.012 -0.013

Notes: See notes under Appendix Table A8 for more details about the specifications and variables. The outcome is
the log of gross personal income (conditional on employed) at age 30. Standard errors are clustered on the child’s
municipality of birth. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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